## Exercise 1C

$1 \frac{x^{3}+2 x^{2}+3 x-4}{x+1} \equiv A x^{2}+B x+C+\frac{D}{x+1}$

$$
\begin{array}{r}
x+1 \begin{array}{r}
x^{2}+x+2 \\
\frac{x^{3}+2 x^{2}+3 x-4}{x^{2}}+3 x \\
\frac{x^{3}+x^{2}}{x^{2}+x} \\
\frac{2 x-4}{-6}
\end{array} \\
\frac{2 x+2}{2}
\end{array}
$$

$$
\frac{x^{3}+2 x^{2}+3 x-4}{x+1} \equiv x^{2}+x+2-\frac{6}{x+1}
$$

So $A=1, B=1, C=2, D=-6$
2 Using algebraic long division:

$$
\begin{gathered}
\frac{2 x^{2}-3 x+5}{x + 3 \longdiv { 2 x ^ { 3 } + 3 x ^ { 2 } - 4 x + 5 }} \\
\frac{2 x^{3}+6 x^{2}}{-3 x^{2}-4 x} \\
\frac{-3 x^{2}-9 x}{5 x+5} \\
\frac{5 x+15}{-10} \\
\frac{2 x^{3}+3 x^{2}-4 x+5}{x+3}=2 x^{2}-3 x+5-\frac{10}{x+3}
\end{gathered}
$$

So $a=2, b=-3, c=5$ and $d=-10$

3 Using algebraic long division:

$$
\begin{aligned}
& x - 2 \longdiv { x ^ { 3 } + 0 x ^ { 2 } + 0 x - 8 } \\
& \frac{x^{3}-2 x^{2}}{2 x^{2}+0 x} \\
& \frac{2 x^{2}-4 x}{4 x-8} \\
& \frac{4 x-8}{0}
\end{aligned}
$$

So $\frac{x^{3}-8}{x-2}=x^{2}+2 x+4$
$p=1, q=2$ and $r=4$
4 Using algebraic long division:

$$
\text { So } m=2, n=4 \text { and } p=7
$$

5 Using algebraic long division:

$$
\begin{gathered}
2 x ^ { 2 } + 2 \longdiv { 8 x ^ { 3 } + 2 x ^ { 2 } + 0 x + 5 } \\
\frac{8 x^{3}+8 x}{2 x^{2}-8 x+5} \\
\frac{2 x^{2}+2}{-8 x+3} \\
8 x^{2}+2 x^{2}+5 \equiv(4 x+1)\left(2 x^{2}+2\right)-8 x+3 \\
\text { So } A=4, B=1, C=-8 \text { and } D=3 .
\end{gathered}
$$

$$
\begin{aligned}
& x ^ { 2 } - 1 \longdiv { 2 x ^ { 2 } + 4 x + 5 } \\
& \frac{2 x^{2}+0 x-2}{4 x+7} \\
& \frac{2 x^{2}+4 x+5}{x^{2}-1} \equiv 2+\frac{4 x+7}{x^{2}-1}
\end{aligned}
$$

6 Using algebraic long division:

$$
\begin{array}{r}
x ^ { 2 } + 2 x - 1 \longdiv { 4 x ^ { 3 } - 5 x ^ { 2 } + 3 x - 1 4 } \\
\frac{4 x^{3}+8 x^{2}-4 x}{-13 x^{2}+7 x-14} \\
\frac{-13 x^{2}-26 x+13}{33 x-27}
\end{array}
$$

$\frac{4 x^{3}-5 x^{2}+3 x-14}{x^{2}+2 x-1} \equiv 4 x-13+\frac{33 x-27}{x^{2}+2 x-1}$
So $A=4, B=-13, C=33$ and $D=-27$.
7 Using algebraic long division:

$$
\begin{array}{r}
x ^ { 2 } + 1 \longdiv { x ^ { 2 } + 2 } \\
\frac{x^{4}+3 x^{2}-4}{2 x^{2}} \\
\frac{2 x^{2}+2}{-6}
\end{array}
$$

$\frac{x^{4}+3 x^{2}-4}{x^{2}+1} \equiv x^{2}+2-\frac{6}{x^{2}+1}$
So $p=1, q=0, r=2, s=0$ and $t=-6$.
8 Using algebraic long division:

$$
\begin{gathered}
x ^ { 2 } + x - 2 \longdiv { 2 x ^ { 2 } + x + 1 } \\
\frac{2 x^{4}+3 x^{3}-2 x^{2}+4 x-6}{x^{3}+2 x^{2}} \\
\frac{x^{3}+x^{2}-2 x}{x^{2}+6 x-6} \\
\frac{x^{2}+x-2}{5 x-4}
\end{gathered}
$$

$$
\frac{2 x^{4}+3 x^{3}-2 x^{2}+4 x-6}{x^{2}+x-2} \equiv 2 x^{2}+x+1+\frac{5 x-4}{x^{2}+x-2}
$$

So $a=2, b=1, c=1, d=5$ and $e=-4$.
$93 x^{4}-4 x^{3}-8 x^{2}+16 x-2 \equiv\left(A x^{2}+B x+C\right)\left(x^{2}-3\right)+D x+E$
Compare coefficients of $x^{4}$ :

$$
A=3
$$

Compare coefficients of $x^{3}$ :

$$
B=-4
$$

Compare coefficients of $x^{2}$ :

$$
\begin{aligned}
-8 & =-3 A+C \\
-8 & =-9+C \quad(\text { substituting } A=3) \\
C & =1
\end{aligned}
$$

Compare coefficients of $x$ :

$$
\begin{aligned}
16 & =-3 B+D \\
16 & =12+D \quad \text { (substituting } B=-4) \\
D & =4
\end{aligned}
$$

Equate constant terms:

$$
\begin{aligned}
-2 & =-3 C+E \\
-2 & =-3+E \quad(\text { substituting } C=1) \\
E & =1
\end{aligned}
$$

Hence $3 x^{4}-4 x^{3}-8 x^{2}+16 x-2 \equiv\left(3 x^{2}-4 x+1\right)\left(x^{2}-3\right)+4 x+1$

Note: After lots of comparing coefficients, it is a good idea to check your answer by substituting a simple value of $\boldsymbol{x}$ into both sides of the identity to check that your answers are correct. For example,
Substitute $x=1$ into LHS

$$
\Rightarrow 3-4-8+16-2=5
$$

Substitute $x=1$ into RHS

$$
\begin{aligned}
& \Rightarrow(3-4+1) \times(1-3)+4+1 \\
& =0 \times-2+4+1=5
\end{aligned}
$$

LHS $=$ RHS, so you can be fairly sure the identity is correct.
$10 \mathbf{a} \quad x^{4}-1 \equiv\left(x^{2}-1\right)\left(x^{2}+1\right)$

$$
\equiv(x-1)(x+1)\left(x^{2}+1\right)
$$

b $\frac{x^{4}-1}{x+1} \equiv \frac{(x-1)(x+1)\left(x^{2}+1\right)}{(x+1)}$

$$
\equiv(x-1)\left(x^{2}+1\right)
$$

So $a=1, b=-1, c=1, d=0$ and $e=1$.

